Производство кирпича полусухим прессованием

В случае если речь поднимается о фабриках, обычно воображают: множество техники, сотни сотрудников, множество транспорта, площади с внушительными терминалами. Высокая доходность оптимизированного производства создается не размахом, а современным и подходящим оборудованием с недолгой окупаемостью. Большинство заводов России так устроены, но они не совсем рентабельные. Новые мобильные заводы приходят вместо производств предыдущего вида.

Производство кирпича методом полусухого прессования

Рисунки к патенту РФ 2348590

Изобретение относится к промышленности строительных материалов, а именно для изготовления кирпича методом полусухого прессования.

Наиболее близким к предлагаемому способу изготовления кирпича является способ, защищенный патентом РФ №2126371, МПК 6 С04В 33/00.

Способ заключается в приготовлении прессовочной массы, включающей измельчение глины с отделением механических включений, ее подсушивание, помол, перемешивание и увлажнение, прессование изделий из полученной массы и их последующей термической обработке. Карьерную глину после измельчения помещают в смеситель дезинтеграторного типа для одновременного помола, перемешивания, подсушивания или доувлажнения до прессовочной влажности. Отпрессованные изделия в течение 3,5-4 часов подвергают термической обработке, осуществляемой по замкнутому циклу, в результате которого изделия сушат при температуре 105-110°С направленным потоком тепловоздушной среды, выделяемым обожженными при температуре 400-700°С изделиями, и охлаждают водяными парами, образующимися при сушке, вместе с водяными парами, содержащими оксид углерода, образующимися при обжиге изделий.

Недостатками способа являются:

- невысокое качество изготовления кирпича и снижение надежности оборудования в связи с тем, что камера обжига, камера остывания и сам кирпич испытывают резкие тепловые удары при перестановке кирпича из камеры в камеру; кроме того температура 400-700°С является недостаточной для обжига, а время 3,5-4 часа является недостаточным для термообработки массы кирпичей, уложенных на тележку, так как происходит недогрев внутренних слоев укладки кирпича, что приводит к снижению качества его изготовления;

- сложность и громоздкость конструкции смесителя дезинтеграторного типа, преобразующего кинетическую энергию встречных потоков глины в тепловую энергию для удаления влаги из нее, что усложняет создание линии большой производительности;

- повышение энергозатрат из-за потерь тепла на испарение влаги из глины, которая в виде пара удаляется в атмосферу;

- повышение трудоемкости, связанной с дополнительными затратами на укладку сырца на тележки.

Наиболее близкой технологической линией к предлагаемой является линия для изготовления керамического кирпича (патент РФ №2131808, МПК 6 В28В 15/00), содержащая расположенные в технологической последовательности глиноприемник, оборудование измельчения и сушки глиняной массы, пресс, устройства для обжига кирпича, передаточные конвейеры, в которой оборудование измельчения и сушки выполнено в виде сушильной барабан-мельницы, перерабатывающей и измельчающей крупную фракцию глиняной массы в пресс-порошок с удельной поверхностью 1500-2500 см 2 /г и уменьшающей влажность массы в результате подсушки перегретой газовоздушной средой зон обжига кирпича, пресс выполнен с возможностью прессования под давлением 50,0-60,0 МПа, устройство обжига выполнено в виде вертикальных шахтных печей с подъемниками-снижателями для перемещения кирпича от места садки в нижнюю зону и для поблочного отбора готового кирпича в нижних зонах печей и перемещения на склад готовой продукции.

Недостатками этой технологической линии являются:

- потери тепла, затраченные на испарение влаги из глины в виде пара, который удаляется в атмосферу;

- большие габариты оборудования из-за комбинации высоких шахтных печей и сушильного барабана мельницы больших размеров;

- высокая трудоемкость садки кирпича в печь в связи с тем, что кирпич движется по шахтным печам в виде столба специальной укладки, что предъявляет повышенные требования к садке кирпича в печь;

- большое время термообработки изделий, так как они уложены в виде вертикального столба.

Наиболее близким техническим решением к предлагаемому прессу является вертикальный гидравлический трехпозиционный пресс револьверного типа К-150 (Надеин А.А. "Механическое оборудование для производства изделий строительной керамики", НГАСУ, 2002, стр.136-138). Пресс имеет периодически вращающийся стол, надетый на одну из трех колонн и опирающийся на шариковый подпятник. Колонны жестко связаны между собой верхней и нижней поперечинами. В столе смонтированы три "плавающие" пресс-формы. К верхней поперечине жестко крепится штамп, а в нижней смонтирован цилиндр с поршнем, имеющим пяту, упирающуюся при прессовании в нижний подвижный штамп. Штамп находится в "плавающей" пресс-форме, вращаясь вместе со столом и удерживаясь от выпадения на заплечиках. Привод вращения стола, обеспечивающий поворот на 120°, состоит из гидроцилиндра, храпового механизма, зубчатых колес и зубчатой рейки, смонтированных на кронштейне. Торможение и фиксация стола в конце поворота осуществляется с помощью пружинного тормоза и стопора.

Недостатками этого пресса являются:

- сложность конструкции, связанная со сложностью механизма вращающегося стола, состоящего из гидроцилиндра, храпового механизма, зубчатых колес и зубчатой рейки, а также со сложностью механизма загрузки пресс-порошка, состоящего из шиберного питателя и гидроотсекателя;

- недостаточно высокое качество прессования из-за наличия воздуха в прессуемом порошке.

Задачей изобретения является уменьшение энергозатрат и улучшение качества изготавливаемого кирпича.

Поставленная задача согласно первому аспекту изобретения достигается тем, что в способе изготовления кирпича полусухого прессования, включающем измельчение глины с отделением механических включений, помещение измельченной глины в смеситель дезинтеграторного типа, помол и перемешивание, прессование штучных изделий с термической обработкой по замкнутому циклу, согласно изобретению измельченную глину вводят в смеситель дезинтеграторного типа вместе с топливными добавками, после помола и перемешивания в смесителе дезинтеграторного типа глину направляют на подсушивание в камеру сушки с одновременным удалением влаги и воздуха, после подсушивания горячую глину помещают для вторичного измельчения в измельчитель-активатор без доступа воздуха с одновременной активацией и перемешиванием шихты для получения прессовочной массы, из полученной горячей пароглиняной массы прессуют штучные изделия в виде сырца, которые поступают на термообработку в горячем состоянии.

Поставленная задача согласно второму аспекту изобретения достигается тем, что в технологической линии для изготовления кирпича методом полусухого прессования, содержащей расположенные в технологической последовательности глиноприемник, оборудование для измельчения и сушки глиняной массы, пресс, устройство для обжига кирпича, передаточные устройства, согласно изобретению технологическая линия дополнительно содержит смеситель дезинтеграторного типа, расположенный после глиноприемника; оборудование для измельчения и сушки глиняной массы включает устройство рекуперативной и кондуктивной сушки, измельчитель-активатор и устройство для прогрева технологической линии, включающее вентилятор и нагреватель; устройство для обжига кирпича выполнено в виде рекуперативной печи с вертикально расположенными внутри нее транспортерами; передаточные устройства, расположенные между устройством сушки и измельчителем-активатором и между измельчителем-активатором и прессом выполнены герметичными и утепленными, а передаточное устройство, расположенное между прессом и печью - утепленным; вход вентилятора соединен с бункером пресса, выход нагревателя - с входом транспортера, расположенного между устройством сушки и измельчителем-активатором, а вход нагревателя соединен с выходом вентилятора и при помощи паропровода с устройством сушки.

Поставленная задача согласно третьему аспекту изобретения достигается тем, что в прессе для технологической линии для изготовления кирпича, содержащем несущие колонны, жестко соединенные верхней и нижней поперечинами, гидроцилиндр для перемещения пресс-формы, верхний и нижний пуансоны, согласно изобретению гидроцилиндр для перемещения пресс-формы связан с ней с возможностью ее возвратно-поступательного перемещения вместе с направляющими по роликам, расположенным на несущей балке, жестко связанной с несущими колоннами; пресс-форма и нижний пуансон связаны между собой через дополнительный гидроцилиндр с возможностью вхождения его в полость шабота до соприкосновения пресс-формы с торцевой плоскостью шабота; верхний пуансон связан с устройством вибрационного или ударного действия, жестко закрепленного на верхней поперечине с возможностью вертикального перемещения; на несущих колоннах закреплен загрузочный бункер для заполнения пресс-формы, с одной стороны которой закреплен шибер, а с другой стороны - пластина удаления изделия; нижняя поперечина каркаса установлена на звукоизолирующих брусьях, а между этой поперечиной и основанием шабота установлена звукоизолирующая прокладка.

Заявляемая технологическая линия позволяет осуществлять возврат тепла в теплоноситель при сушке глины, возвращение тепла при термообработке изделий, производить активацию прессовочной массы, осуществлять безвоздушное прессование, однорядную обработку изделий в печи, подачу на термообработку уже горячего сырца, создавать восстановительную, затем окислительную атмосферу в изделии в процессе его обжига. Все это значительно сокращает энергозатраты и повышает качество изготавливаемого кирпича.

На фиг.1 представлена принципиальная схема технологической линии для изготовления кирпича методом полусухого прессования.

На фиг.2 показан вид спереди пресса для прессования кирпича-сырца.

На фиг.3 показан продольный разрез пресса для прессования кирпича-сырца.

На фиг.4 (а, б, в, г, д, е) представлен полный цикл работы пресса.

Способ изготовления кирпича осуществляют следующим образом.

Карьерную глину предварительно измельчают, отделяя механические примеси, а затем помещают в смеситель дезинтеграторного типа, куда подаются топливные добавки. В смесителе дезинтеграторного типа происходит предварительное измельчение и перемешивание шихты. В качестве топливной добавки может служить каменный уголь в количестве 0,5-3% от массы глины. Полученную шихту направляют на подсушивание в камеру сушки с одновременным удалением влаги и воздуха. Удаление воздуха при сушке происходит до 0,5-1% от количества пара, а удаление влаги - до 8-9% от общей массы шихты. Из устройства сушки выходит полусухая шихта, пространство между частицами которой заполнено паром. После подсушивания горячую шихту помещают для вторичного измельчения в измельчитель-активатор без доступа воздуха с одновременной активацией и перемешиванием шихты для получения прессовочной массы. После вторичного измельчения размер частиц составляет менее 1 мм, а их измельчение и активация происходит встречными потоками, скорость которых достигает 150 м/сек. Активация позволяет уменьшить влияние карбонатов глины на качество изделий, улучшить прессуемость пресс-порошка, снизить температуру спекания при термообработке изделия в среднем на 50°С, повысить морозостойкость готовых изделий. Из полученной горячей пароглинянной массы прессуют штучные изделия в виде сырца. Отпрессованные изделия поступают в горячем состоянии на термическую обработку по замкнутому циклу. Досушку и обжиг изделий осуществляют в печи с вертикально расположенными транспортерами в благоприятной восстановительно-окислительной парогазовой атмосфере.

Способ реализуется в технологической линии (фиг.1). Технологическая линия содержит глиноприемник 1, смеситель дезинтеграторного типа 2, оборудование для измельчения и сушки глиняной массы, которое включает камеру рекуперативной и кондуктивной сушки 3, измельчитель-активатор 5, пресс 7, устройство для прогрева технологической линии, состоящее из вентилятора 10 и нагревателя 11, рекуперативную печь 9 для обжига кирпича с вертикально расположенными внутри нее транспортерами, передаточные устройства 4, 6, 8. Передаточные устройства 4 и 6, расположенные между устройством сушки и измельчителем-активатором и между измельчителем-активатором и прессом выполнены герметичными и утепленными, а передаточное устройство 8, расположенное между прессом 7 и печью 9 - утепленным. Вход вентилятора соединен с бункером пресса, выход нагревателя - с входом транспортера, расположенного между устройством сушки и измельчителем-активатором, а вход нагревателя соединен с выходом вентилятора и при помощи паропровода с устройством сушки.

Технологическая линия работает следующим образом.

Глиняное сырье подается в глиноприемник 1, где оно с помощью стандартного оборудования очищается от камней и металлических предметов. Далее глину подают в стандартный смеситель дезинтеграторного типа 2, куда подаются и топливные добавки. В смесителе дезинтеграторного типа происходит предварительное измельчение и перемешивание шихты. Затем шихту направляют на подсушивание в камеру сушки 3 с одновременным удалением влаги и воздуха. Для этих целей служит устройство, описанное в заявке на изобретение №2007118122 "Способ сушки сыпучих материалов и камера сушки для него". Устройство имеет герметичную камеру сушки, из которой в процессе сушки шихты вытесняется воздух и создается паровая атмосфера. Камера сушки позволяет в 2-2,5 раза уменьшить затраты тепла на сушку шихты по сравнению с обычными сушилками. При этом на выходе камеры получаются горячая вода и горячая шихта. После выхода из герметичной камеры 3 шихта попадает через герметичный транспортер 4 в измельчитель-активатор 5, в котором происходит тонкое измельчение, перемешивание, а также активация частиц шихты. После выхода из герметичного измельчителя-активатора пресс-порошок через герметичный утепленный транспортер 6 попадает в бункер пресса 7. Причем прохождение шихты происходит через транспортеры 4, 6, измельчитель-активатор и бункер пресса, предварительно прогретые с помощью вентилятора и нагревателя, а для вытеснения воздуха из данных устройств используется пар из камеры сушки 3. Так как заполнение пресс-формы пресса происходит без поступления воздуха в пресс-порошок, то перед прессованием в пресс-форме находится смесь горячего пресс-порошка и пара. В процессе прессования пар конденсируется на частицах пресс-порошка, несколько увеличивая температуру частиц. Таким образом из пресса выходит кирпич-сырец, в порах которого находятся конденсат и пар. Для того чтобы исключить интенсивное испарение влаги с поверхности горячего сырца, он перемещается к печи 9 по утепленным транспортерам 8. Это необходимо как для предотвращения образования трещин в сырце, так и для предотвращения повышения влажности в производственном помещении. Досушка и обжиг кирпича происходит в печи 9, описанной в заявке на изобретение №2007104881 "Печь для обжига керамических изделий". Так как влагопроводность горячего сырца в несколько раз выше, чем влагопроводность холодного сырца, и так как не тратится время на прогрев, сушка сырца в печи значительно ускоряется. Так как в состав шихты на первом этапе было введено топливо, то в процессе обжига в изделии создается восстановительная, затем окислительная атмосфера. Восстановительно-окислительная атмосфера положительно влияет на прочность, морозостойкость изделий из глин разных минеральных составов, а также на 100-150°С снижает температуру спекания изделия, что положительно сказывается на долговечности деталей печи, повышает ее производительность и экономичность.

На фиг.2, 3 изображен пресс 7, входящий в технологическую линию.

Пресс содержит несущие колонны 12, жестко соединенные верхней 13 и нижней 14 поперечинами, гидроцилиндр 15 для перемещения пресс-формы 16, верхний 17 и нижний 18 пуансоны. Гидроцилиндр 15 для перемещения пресс-формы связан с ней с возможностью ее возвратно-поступательного перемещения вместе с направляющими 19 по роликам 20, расположенным на несущей балке 21, жестко связанной с несущими колоннами. Пресс-форма 16 и нижний пуансон 18 связаны между собой через дополнительный гидроцилиндр 22 с возможностью вхождения его в полость шабота 23 до соприкосновения пресс-формы с торцевой плоскостью шабота. Верхний пуансон 17 связан с устройством вибрационного или ударного действия 24, жестко закрепленного на верхней поперечине 13 с возможностью вертикального перемещения. На несущих колоннах закреплен загрузочный бункер 25 для заполнения пресс-формы, с одной стороны которой закреплен шибер 26, а с другой стороны - пластина удаления изделия 27. Нижняя поперечина 14 каркаса установлена на звукоизолирующих брусьях 28. Между нижней поперечиной 14 и основанием шабота 23 установлена звукоизолирующая прокладка 29.

Пресс работает следующим образом.

Последовательность операций, составляющих цикл работы пресса, показана на фиг.4 (а, б, в, г, д, е). Исходное состояние пресса изображено на фиг.4а. В этом состоянии пресс-форма 16 находится под бункером 25, верхний 17 и нижний 18 пуансон находятся в крайнем верхнем положении. Цикл работы начинается с загрузки пресс-формы. При этом нижний пуансон 17 при помощи гидроцилиндра 15 перемещается вниз на глубину засыпки, и вслед за ним без образования пустот поступает пресс-порошок (фиг.4б). После окончания засыпки пресс-форма при помощи гидроцилиндра 22 перемещается на шабот 23 под верхний пуансон (фиг.4в). В процессе прессования (фиг.4г) нижний пуансон опускается на шабот, а верхний пуансон входит в пресс-форму и уплотняет пресс-порошок при помощи вибрационных или импульсных силовых воздействий. При этом в пресс-порошке пар конденсируется на поверхности частиц пресс-порошка. Паровоздушная смесь пресс-порошка содержит менее 1% воздуха, поэтому влияние воздуха на процесс прессования минимально. После окончания прессования верхний пуансон занимает крайнее верхнее положение. Нижний пуансон при помощи гидроцилиндра 15 выталкивает спрессованный кирпич-сырец на уровень пластины удаления 27 (фиг.4д). После этого пресс-форма вместе с нижним пуансоном и гидропилиндром 15 при помощи гидроцилиндра 22 перемещается в исходное состояние с готовым изделием на пластине удаления 27 (фиг.4е). При этом сырец задерживается специальным упором и смещается с нижнего пуансона на пластину удаления 27, которая перемещается вместе с пресс-формой. В следующем цикле сырец перемещается вместе с пластиной удаления и оказывается над транспортером приема сырца 30. Затем при движении пресс-формы в исходное состояние сырец сталкивается с пластины удаления на транспортер приема сырца при помощи специальной заслонки.

Предлагаемое изобретение по сравнению с известными имеет следующие преимущества:

- снижение энергозатрат за счет сушки глины с возможностью возвращения тепла из пара за счет термообработки в компактной печи с встречным движением рядов кирпича, при котором тепло от нагретого кирпича возвращается к нагреваемому, благодаря полному использованию тепла отводимых газов за счет исключения потерь тепла при переходе на другие операции, благодаря использованию герметичных и утепленных транспортеров;

- повышение качества изготавливаемого кирпича за счет качественного измельчения, перемешивания и активации пресс-порошка, а также безвоздушного прессования сырца и однорядной термообработки изделий в печи, которая обеспечивает равномерный прогрев изделий;

- уменьшение габаритов оборудования технологической линии;

- улучшение условий труда, благодаря отсутствию пыли и газов;

- увеличение производительности труда за счет автоматизации линии.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Способ изготовления кирпича полусухого прессования, включающий измельчение глины с отделением механических включений, помещение измельченной глины в смеситель дезинтеграторного типа, помол и перемешивание, прессование штучных изделий с термической обработкой по замкнутому циклу, отличающийся тем, что измельченную глину вводят в смеситель дезинтеграторного типа вместе с топливными добавками, после помола и перемешивания в смесителе дезинтеграторного типа полученную шихту направляют на подсушивание в камеру сушки с одновременным удалением влаги и воздуха, после подсушивания горячую шихту помещают для вторичного измельчения в измельчитель-активатор без доступа воздуха с одновременной активацией и перемешиванием шихты для получения прессовочной массы, из полученной горячей пароглиняной массы прессуют штучные изделия в виде сырца, которые поступают на термообработку в горячем состоянии.

2. Технологическая линия для изготовления кирпича методом полусухого прессования, содержащая расположенные в технологической последовательности глиноприемник, оборудование для измельчения и сушки глиняной массы, пресс, устройство для обжига кирпича, передаточные устройства, отличающаяся тем, что технологическая линия дополнительно содержит смеситель дезинтеграторного типа, расположенный после глиноприемника; оборудование для измельчения и сушки глиняной массы включает устройство рекуперативной и кондуктивной сушки, измельчитель-активатор и устройство для прогрева технологической линии, включающее вентилятор и нагреватель; устройство для обжига кирпича выполнено в виде рекуперативной печи с вертикально расположенными внутри нее транспортерами; передаточные устройства, расположенные между устройством сушки и измельчителем-активатором и между измельчителем-активатором и прессом выполнены герметичными и утепленными, а передаточное устройство, расположенное между прессом и печью - утепленным; вход вентилятора соединен с бункером пресса, выход нагревателя - с входом транспортера, расположенного между устройством сушки и измельчителем-активатором, а вход нагревателя соединен с выходом вентилятора и при помощи паропровода с устройством сушки.

3. Пресс для технологической линии для изготовления кирпича, содержащий несущие колонны, жестко соединенные верхней и нижней поперечинами, гидроцилиндр для перемещения пресс-формы, верхний и нижний пуансоны, отличающийся тем, что гидроцилиндр для перемещения пресс-формы связан с ней с возможностью ее возвратно-поступательного перемещения вместе с направляющими по роликам, расположенным на несущей балке, жестко связанной с несущими колоннами; пресс-форма и нижний пуансон связаны между собой через дополнительный гидроцилиндр с возможностью вхождения его в полость шабота до соприкосновения пресс-формы с торцевой плоскостью шабота; верхний пуансон связан с устройством вибрационного или ударного действия, жестко закрепленного на верхней поперечине с возможностью вертикального перемещения; на несущих колоннах закреплен загрузочный бункер для заполнения пресс-формы, с одной стороны которой закреплен шибер, а с другой стороны - пластина удаления изделия; нижняя поперечина каркаса установлена на звукоизолирующих брусьях, а между этой поперечиной и основанием шабота установлена звукоизолирующая прокладка.

Источник: http://www.freepatent.ru/patents/2348590

Производство кирпича полусухим прессованием

Кирпичная кладка с давних времен пользуется популярностью в строительстве. Сегодня совершенно иная технология производства кирпичей по сравнению с прошлым, да и их видов стало на порядок больше.

Одним из самых популярных строительных материалов на сегодняшний день является кирпич полусухого прессования. Это прессование еще называют сухим, однако более правильным будет все же первый вариант. Почему? Об этом мы также поговорим.

Такой кирпич (пресованный) часто используется в строительстве.

Свойства

Преимущества

Кирпич сухого прессования имеет массу преимуществ, которые и позволили ему зарекомендовать себя в строительстве. Прежде всего, положительные стороны у данного строительного материала присутствуют благодаря технологии производства, о которой мы поговорим в самом конце.

Источник: http://klademkirpich.ru/vidi/49-pressovannyj-kirpich

Производство кирпича полусухим прессованием

Приготовление пресс-порошка

Керамическими пресс-порошками называют высококонцентрированные (мало влажные) дисперсные глинистые системы, не обладающие связностью. Отсутствие связности обусловливает наиболее характерное свойство порошков — их сыпучесть, т. е. псевдотекучесть в исходном состоянии. Ее характеризуют скоростью истечения порошка под действием собственной массы через отверстие определенного диаметра. Глиняные порошки должны иметь заданный зерновой (гранулометрический) состав и влажность, должны обладать однородной пофракционной влажностью и содержать минимальное количество пылевидной фракции. Все эти характеристики влияют на прессуемость порошка — его способность к максимальному уплотнению при минимальном давлении с образованием при этом изделий, обладающих однородной плотностью, минимальным упругим расширением и отсутствием трещин расслаивания.

Керамические порошки готовят сушильно-помольным и шликерным способами.

При сушильно-помольном способе глину подвергают последовательно грубому дроблению, сушке, помолу просеву и увлажнению. Дробят глину на валковых дробилках и перемалывают при помощи стержневых мельниц, а сушат в сушильных барабанах прямотоком, так как при противотоке возникает опасность сильного перегрева глины, частичной ее дегидратации, и большой потери пластических свойств. Температура газов t1, поступающих в барабан, составляет обычно 600-800°С. Снижение t1 обеспечивает более однородную пофракционную влажность, но уменьшает производительность барабана. Повышение t1 сверх указанного предела нецелесообразно, так как оно приводит к дегидратации мелкой фракции глины и обусловливает быстрый выход из строя входной секции барабана. Нормальная температура отходящих газов t2 должна быть 110-120°С. Резкое повышение t2 свидетельствует о перересушке глины. Температура глины, выгружаемой из сушильного барабана, составляет 60-80°С. Конечная влажность 9-11%.

При прохождении глины через барабан изменяется ее гранулометрический состав. Мелкие фракции, быстро высыхая, истираются до пылевидного состояния, а крупные куски, распариваясь, слипаются и окатываются в крупные комья. Это обусловливает большую влажностную неоднородность высушенной глины, затрудняющую работу помольных машин. Так, при средней влажности 8,5-12% влажность наиболее крупных кусков достигает 15,5-19%. К тому же и в пределах одного куска отмечается значительный перепад влажности. Некоторое повышение равномерности сушки достигается устройством цепных завес в сушильных барабанах, которые частично измельчают глину, создавая тем самым условия для более равномерной ее сушки. Но даже и с наличием цепных завес сушильный барабан нельзя считать достаточно совершенным в технологическом отношении агрегатом.

Для помола глины в производстве кирпича применя­ют стержневые смесители. Они работают устойчиво при рекомендуемой влажности не выше 10%. При наличии в глине каменистых включений стержни смесителей изнашиваются более быстро и они требуют более частой замены.

Просеивают глину для отделения крупных зерен по­рошка. Для этого используют струнные сита, барабанные грохоты (бураты), качающиеся и вибрационные сита. На струнных ситах можно отделять только очень крупные куски глины, так как расстояние между сильно натянутыми струнами значительно изменяется вследствии их изгибания.

При подготовке пресс-порошков не всегда удается после помола получить порошок с влажностью, необходимой и достаточной для прессования. Чтобы обеспечить производительную работу помольных машин и необхо­димую тонину помола, приходится иногда сушить и мо­лоть глину при влажности несколько ниже прессовочной, а затем порошок вновь увлажнять. Такое увлажнение осуществляют распылением воды в глиномешалках или паром в специальных аппаратах.

Основное требование, которое предъявляют к увлажняющему аппарату, сводится к тому, чтобы при увлажнении порошка глины не образовались комочки переувлажненного материала, так называемой «изюм». Для этого воду подают в тонко распыленном состоянии, а весь материал при этом перемешивают. Хорошие результаты получаются при увлажнении глины во взвешенном состоянии, т. е. в момент, когда она выходит из бункера в смеситель. При увлажнении глиняного порошка паром качество кирпича намного улучшается: не появляются трещины расслаивания, возрастают прочность и морозостойкость.

Во всех возможных случаях необходимо избегать повторного увлажнения глиняного порошка, так как добиться при этом равномерной влажности его весьма трудно по следующим причинам: в высушенном порошке крупные зерна являются влажными, а мелкие — более сухими. Влажная поверхность имеет всегда более низкую температуру, чем сухая. Поэтому пар в первую очередь конденсируется на более холодной влажной поверхности крупных кусочков глины. Мелкая ее фракция, наиболее сухая, или совсем не увлажняется, или увлажняется в меньшей мере, в результате чего пофракционная влажность порошка не только не выравнивается, но иногда даже возрастает.

Для выравнивания влажности подвергают порошок вылеживанию в бункерах. Однако этот процесс протекает довольно медленно. В течение суток практически вы­равнивание влажности достигается в пределах одного зерна, а между отдельными зернами оно еще не наступает вследствие относительно небольшой контактной поверхности между ними. Кроме того, увлажнение поверхности зерен порошка снижает его сыпучесть, что в последующем затрудняет его хранение в бункерах и транспортирование. Поэтому процесс вылеживания порошка следует считать полезным, улучшающим его прессовочные свойства, но нужно стремиться осуществлять этот процесс по возможности без предварительного увлажнения порошка.

Оптимальная влажность порошка зависит от прило­женного прессового давления. Экстремум на кривой «объемная масса прессовки — влажность» соответствует оптимальной влажности при данном давлении. Пониженная (против оптимальной) влажность обусловит сухой контакт частиц порошка, повышенное внутреннее трение и пониженную плотность прессовки, а превышение оптимальной влажности — образование водных пленок между прессуемыми частицами и исключит их непо­средственное контактирование, что в конечном счете также понизит плотность прессовки.

При шликерном способе подготовки пресс-порошка глину в глиноболтушках распускают горячей водой в шликер влажностью 40-45%. Затем его под давлением 0,25 МПа накачивают для отделения каменистых вклю­чений в дуговые сита, откуда очищенным он сливается в открытые шламбассейны вместимостью 2500 или 6000 м3, оборудованные крановыми мешалками. В них также поступает для барботажа компрессорный воздух. Из шламбассейна шликер насосом подают в распылительную сушилку, откуда порошок с влажностью 10% поступает через контрольное сито в расходные бункера.

Шликерный способ имеет большие преимущества пе­ред сушильно-помольным. При нем в одном агрегате — распылительной сушилке — совмещаются процессы сушки и грануляции глины, резко улучшаются условия производственного комфорта, процесс может быть автоматизирован.

Пресс-порошок, полученный в распылительных сушилках, обладает большой влажностной однородностью, практически не содержит пылевидной фракции, по гранулометрическому составу приближается к моно­фракционному, из него при прессовании легко удаляется воздух, вследствие чего порошок равномерно пропрессовывается при более низких давлениях. Свойства его стабильны благодаря полной автоматизации процесса.

Прессование изделий из керамических порошков

Теория полусухого прессования изучает закономерности, определяющие свойства спрессованного сырца (прессовок) в зависимости от свойств пресс-порошка и условий его прессования.

Керамические порошки представляют собой трехфазную систему, состоящую из твердой минеральной части, жидкой фазы — воды и воздуха. Для получения высокоплотного спрессованного полуфабриката из пластичных масс целесообразно использовать порошки типа монофракционных с выбором конечного давления, обеспечивающего полное устранение расположенных между частицами свободных промежутков за счет пластической деформации частиц.

Начало прессования керамического порошка сопровождается его уплотнением за счет смещения частиц относительно друг друга и их сближения. Это является первой стадией уплотнения. При этом происходит ча­стичное удаление воздуха из системы.

Следующая (вторая) стадия уплотнения характери­зуется пластической необратимой деформацией частиц. При этом увеличивается контактная поверхность между частицами. Одновременно с этим уплотнение каждой элементарной частицы сопровождается выжиманием влаги из ее глубинных слоев на контактную поверхность частицы. Оба эти фактора обусловливают возрастание сцепления между частицами. Вода вместе с содержащимися в ней глинистыми коллоидами цементирует крупные частицы прессовки, а с увеличением контактной поверхности возрастает эффект такой цементации. В этой стадии уплотнения может иметь место защемление и упругое сжатие воздуха, который не успел удалиться из порошка.

В третьей стадии уплотнения наступает упругая деформация частиц. Такие деформации наиболее вероятны для тонких удлиненных частиц в виде игл и пластинок, которые могут изгибаться по схеме зажатой консоли или балки, опирающейся на две опоры.

Последняя стадия уплотнения сопровождается хрупким разрушением частиц, при котором прессовка получает наибольшее уплотнение и наибольшее сцепление вследствие сильного дальнейшего развития контактной поверхности. Для осуществления хрупких деформаций требуется очень большое давление, которое при полусухом прессовании большинства керамических изделий практически не достигается.

После прекращения действия прессующего усилия и освобождения изделия из формы происходит его упру­гое расширение, достигающее в отдельных случаях 8%. Упругое расширение не дает возможности получать прессовки с максимальной плотностью и является причи­ной образования других пороков изделий, спрессованных из порошков.

Причинами упругого расширения могут быть обратимые деформации твердых частиц, расширение запрессованного воздуха, а также адсорбционное расклинивание контактов влагой, выжатой при прессовании из контактных поверхностей в более крупные поры.

Разницу между высотой засыпанного в форму порош­ка и высотой полученной прессовки называют «осадкой».

По мере возрастания давления осадка сначала интенсивно развивается, затем начинает затухать и при достижении некоторого давления, характерного для каждого порошка с данными свойствами, почти полностью прекращается. Это указывает на то, что для каждого порошка с присущими ему прессовочными свойствами существует определенное давление, превышать которое не имеет смысла, так как за его пределами дальнейшего уплот­нения прессовки почти не происходит.

Прессовое давление, приложенное к штампу, затухает в направлении толщины изделия. Перепады давления и плотности по толщине прессовки могут быть снижены пластификацией порошков повышением влажности (технологической связки), введением ПАВ, смазывающих веществ и подогревом пресс-формы. Эти же мероприятия снижают неравноплотность в горизонтальных направлениях.

На равноплотность прессовки очень большое влияние оказывает режим прессования. По направленности прессовых усилий различают прессование одностороннее и двусторонние, по кратности их приближения – однократное и многократное прессование, по интенсивности приложения – ударное и плавное прессование.

Двухстороннее прессование уменьшает степень неравноплотности прессовки, поскольку путь необходимого перемещения штампа. Поэтому современные прессы изготовляют с двухсторонним прессованием даже для формования сравнительно тонких изделий.

Но двухстороннее прессование может быть также при одном подвижном штампе и плавающей (свободно-подвижной) форме. В этом случае нижний штамп неподвижен, а форма мо­жет перемещаться относительно штампов, для которой они являются направляющими.

При многократном (ступенчатом) прессовании чере­дуются между собой стадии нагрузки, когда штамп давит на порошок, со стадиями разгрузки, когда штамп несколько приподнимается и прессовка освобождается от прессующего давления.

Факторы, определяющие качество прессовки, в значительной степени зависят от длительности приложения прессующей нагрузки. Наихудшие результаты получаются при ударном прессовании, наилучшие — при плавном приложении нагрузки. При этом увеличивается плотность прессовки, возрастает ее равноплотность, снижается упругое последействие и воздух наиболее полно удаляется из прессуемого порошка.

Для изделий, спрессованных из порошков, характерными являются так называемые трещины расслаивания. Они возникают на боковых поверхностях прессовки, перпендикулярно направлению прессующего усилия, и выводят изделия в брак. В производственном обиходе их возникновение объясняют обычно «перепрессовкой» изделия, что указывает на чрезмерно боль­шое прессовое давление, которое якобы и является причиной их возникновения. Однако в действительности механизм их возникновения гораздо сложней. Непосредственной, ближайшей причиной возникновения трещин расслаивания является упругое расширение прессовки. Расширение является деформацией, а всякая деформация происходит в результате действия каких-то сил. Природа этих сил, возникающих в спрессованном изделии и вызывающих его упругое расширение, объясняется отдельными авторами по-разному. Чаще всего их возникновение объясняют упругим расширением запрессованного воздуха (первый фактор) и упругим сжатием самой формы (второй фактор), в которой прессуется изделие. Оба эти фактора, несомненно, играют определенную роль в возникновении трещин расслаивания. Но, кроме того, в работе серией оригинальных опытов было показано, что в действительности отдельные участки прессуемого изделия при одном и том же коэффициенте сжатия и при одном и том же общем прессовом давлении получают неодинаковое уплотнение и стараются сместиться в отношении друг друга. В силу этого в из­делии возникает «барический рельеф» (третий фактор), соответствующий различным давлениям и смещениям, которые испытывали отдельные участки изделия во вре­мя его прессования. Напряжения этих смещений и явля­ются зародышами трещин расслаивания.

В соответствии с изложенными представлениями для предотвращения трещин расслаивания рекомендуется применять порошки с возможно большей однородностью зерен по их крупности и, во всяком случае, с удалением из порошка более крупных зерен, оказывающих наиболь­шее сопротивление сжатию. Повышение влажностной однородности порошка также будет снижать его склонность к образованию трещин расслаивания, так как сопротивление порошка сжатию зависит не только от его гранулометрического состава, но и от его влажности.

Влияние барического рельефа на образование трещин расслаивания не исключает участия в их образовании и запрессованного воздуха, что было подтверждено специальными исследованиями, которыми было установлено, что не весь воздух, содержащийся в порошке, вытесняется из него при прессовании. Подавляющее большинство воздухопроводящих каналов в периферийной части прессовок закрывается при сравнительно низких давлениях — 0,5 МПа при влажности порошка 10% и 5 МПа при влажности 8-10%. Коэффициент запрес­совки воздуха в порошке Кз.в — доля запрессованного воздуха в общем его объеме в порошке при прессовании тонкозернистых глинистых порошков — находится в пределах 0,37-0,715. Возрастание скорости прессования (переход от гидравлических прессов к рычажным) увеличивает Кз.в на 20-50%.

Увеличение влажности порошка повышает внутрен­нее давление запрессованного в нем воздуха. Давление его внутри прессовки (при W =10-12%) достигает почти 10 МПа, в то время как при влажности порошка 6-8% давление запрессованного воздуха не превышает 2 МПа. Высокое давление воздуха во влажных порошках приводит к возникновению в прессовках растягивающих напряжений и как следствие к образованию трещин расслаивания. В связи с этим некоторые специалисты реко­мендуют прессовать кирпич из порошков пониженной влажности (7-8%), но при более высоких давлениях - 40 МПа.

При медленном прессовании запрессованный воздух более равномерно распределяется в прессуемом порош­ке, в результате чего предотвращается образование от­дельных, более опасных зон, в которых усилия превы­шают прочность прессовки в момент конца ее сжатия.

Грубозернистые отощенные порошки обладают меньшим Кз.в= 0,303— 0,57; интервал давлений, в которых происходит вытеснение воздуха, растянут у них до 10 МПа, упругое расширение у них ниже - не превышает 4,5%. Поэтому упругое расширение в момент снятия давления у таких порошков почти не происходит и, сле­довательно, процесса расслаивания не наблюдается.

Четвертым фактором, обусловливающим упругое расширение прессовки, являются упругие деформации плоских глинистых частиц. Поэтому склонность к рас­слаиванию прессовок возрастает с увеличением содер­жания глинистой части в порошке.

Для полусухого прессования строительного кирпича серийно изготовляют пресс СМК 491, коленорычажного типа с двухсторонним прессованием. Усилие прессование пресса составляет 6,3 МН.

Сушка спрессованного сырца

На кирпичных заводах полусухого прессования, построенных до 1950 г. сушка сырца в обособленных искусственных сушилках отсутствовала. На этих заводах он досушивался в зоне подготов­ки кольцевой печи. В них процесс досушки практически нерегулируем, что приводит к снижению качества кирпича и к повышенному выходу брака. На заводах, по­строенных в 1950-1955 гг. спрессованный сырец сушат в туннельных сушилках на печных вагонетках. Длительность сушки 16-24 ч. Конечная влажность 4-6%. Теплоносителями являются горячий воздух, отбираемый из зоны остывания туннельных печей, а также их отходящие газы. Начальная температура теплоносителя 120-150° С.

3.4. Обжиг спрессованного сырца

Процесс формирования черепка в керамическом изделии полусухого прессования можно представить себе следующим образом. В массе глиняного порошка, поступающего на прессование, имеются разнородные по влажности агрегированные глиняные частицы соответственно различной плотности и различной твердости. Сами агрегированные частицы глиняного порошка также неоднородны по твердости, так как наряду с пластичной увлажненной массой глинообразующих минералов в них содержатся и более крупные зерна тощего материала — главным образом зерна кварца.

В процессе прессования сырца сначала сближаются отдельные агрегированные частицы глины, затем наступает их деформация, а в последней стадии прессования более твердые частицы глины вдавливаются в более мягкие. Более сухие частицы глины проникают в мягкие увлажненные частицы. Точно так же и твердые зерна кварца вдавливаются в более мягкие агрегированные частицы глины. Возникающие при этом большие силы трения обусловливают прочное сцепление отдельных глиняных частиц в единый агрегированный сросток. Однако в нем отдельные частицы глины все же имеют между собой поверхности раздела, что коренным образом отличает эту структуру от структуры сырца пластического формования, имеющего сплошную массу «коллоидального вяжущего». При полусухом прессовании «массив» сырца образуется механическим сближением отдельных зерен керамического порошка, в котором каждое зерно имеет структуру, аналогичную пластичному тесту, а в сырце между ними остаются существовать поверхности раздела, несмотря на кажущееся сильное взаимодействие между зернами порошка при его прессовании.

В сырце полусухого прессования существенно изменяется роль коллоидной фракции. Она действует главным образом не на контактных поверхностях частиц, а внутри самих частиц и агрегирует первичные зерна минералов в глинистую частицу, а не цементирует спрессованные частицы друг с другом.

При таком размещении коллоидной фракции жидкая фаза при обжиге развивается в первую очередь не на контактных поверхностях глиняных агрегатов, а внутри их. На контактных поверхностях глинистых агрегатов возникает относительно небольшое количество жидкой фазы. Оно не обеспечивает сплошной цементации контактных поверхностей. Цементация носит в этом случае характер контактного спекания аналогично «точечной сварке». Этим объясняется пониженная сопротивляемость изделий полусухого прессования изгибу.

Схема структуры обожженного черепка полусухого прессования 1 — глинистые агрегаты; 2—жидкая фаза, цементирующая глинистые агрегаты контактным спеканием

Ослаблению контактов между спрессованными глинистыми агрегатами способствует и своеобразный характер усадки в сырце полусухого прессования. Это своеобразие заключается в том, что в сырце полусухого прессования каждая частица глины будет претерпевать усадку локально и вследствие этого сокращаться в размерах будет не весь массив сырца, а в отдельности каждая частица, отодвигаясь от соседней, вызывая появление напряжений и трещин на поверхностях раздела спрессованных глиняных частиц. Для заполнения этих трещин жидкой фазой необходимо увеличенное ее количество, которое возможно получить лишь за счет повы­шения температуры обжига.

Таким образом, своеобразие структуры и механизма формирования керамического черепка полусухого прессования обусловливает его пониженное сопротивление изгибу, повышенную водо- и газопроницаемость, необ­ходимость более высоких температур обжига и в связи с этим применения керамических масс с большим интервалом спекания. Создание восстановительной среды как в теле обжигаемого кирпича (запрессовкой угля в сырец), так и в печном пространстве в последней стадии обжига имеет для интенсификации процессов спекания при обжиге кирпича полусухого прессования еще боль­шее значение, чем при обжиге изделий пластического формования.

Источник: http://www.plinfa.com/r/directions/pressing.html

Производство прессованного кирпича

Приветствую всех интересующихся этой темой.

Я много лет занимаюсь производством кирпича по технологии гиперпрессования ( на заводе "ФАГОТ" 9лет, завод "ЛИТОС" 1 год и небольшое предприятие по производству кирпича ООО КСК"КРАСКО" 2 года по сей день), все это в Луганской обл. Украина.

Мне трудно сказать, что конкретному человеку или предприятию нужно для того чтобы наладить такое производство, но имея значительный опыт, может кому-то помогу.

Итак начну с наиболее важного - сырье, т.е. песок, т.е. заполнитель.

В наших краях в прошлом году выпускало кирпич около 20 предприятий общей производительностью около 110 млн.шт.

Все работают на сырье из одного карьера известняка-ракушечника. Пробовали за много лет всякое сырье: - перегоревшая порода териконов, отказались по причине присутствия в породе мельчайших частиц угля, которые в запрессованном насмерть кирпиче начинали разлагаться и рвать его; - отсевы гранитных карьеров (прекрасное сырье для производства тротуарной плитки) оказались непригодными по причине плохого эстетического вида и износа пресс-формы приблизительно в 6 раз больше чем на нашем известняке ракушечнике, но и он в этом плане не подарок; - комбинации различных песков и граншлака доменного производства, используется в различной степени.

На сегодняшний день большинство произведенного в наших краях кирпича производиться по простейшей рецептуре:

- передробленный песок известняка-ракушечника до фракции <5мм (в лучшем случае);

- цемент ПЦ 400 или 500, кто как, или турецкий белый марки 500 16-20% к песку;

- красящий пигмент 2-8% от массы цемента;

- вода до влажности смеси 7-10%.

Вилка по величинам в рецептуре на конкретном предприятии обычно более жесткая, я привел значения все мне известные. Требования к исходным материалам зависят в первую очередь от технических возможностей каждого производства, а во вторую- от требовательности руководства к качеству выпускаемой продукции ( как говориться "и так улетает").

Приведу вещественный состав известняка-ракушечника на котором мы работаем: кварц в среднем 30% зернами 0,1-2мм. карбонаты в среднем 28% в составе мергеля белого цвета и ракушечного известняка, глауконит в среднем 1,2% частицами 0,1-0,6 мм от темно-зеленого до буро-зеленого цвета, отдельные зерна полевого шпата, глинистая фракция составляет в среднем 30%. Вся эта масса имеет очнеь насыщенный желтый цвет с оттенками в сторону красного и зеленого.

Прелесть этого месторождения сырья заключается в том, что его природные пропорции дают хорошую прочность за счет наличия кварца, достаточную пластичность при прессовании за счет глинистых и прекрасный насыщенный желтый цвет за счет гидрооксидов железа.

Я был на многих предприятиях, где делают кирпич по технологии полусухого гиперпрессования начиная от Черновцов, Винницы, Одессы, Днепропетровска, Крыма и заканчивая Махачкалой и Баку, а по рассказам и Финляндии. Все зависит от песка, т.е. от заполнителя. Это даст в первую очередь эстетичность облицовочного кирпича, а это одна из главных составляющих коммерческого успеха. Хороший состав заполнителя даст вам возможность экономить на цементе, а это самая большая составляющая в себестоимости бетонного кирпича. Природный или малокомпонетный заполнитель прозволит сэкономить на линиях дробления и смешивания, а это самая дорогостоящая часть оборудования (даже дороже чем пресса).

Основное все по сырью. Если это все кому-то интересно - спрашивайте, постараюсь дать конкретную информацию, а в дальнейшем рассмотрю темы прессов, БСУ, пресс-форм, обработки и далее.

Источник: http://www.allbeton.ru/forum/topic13105.html?PAGEN_1=3

Смотрите по теме

18 ноября 2018 года

Часто читают...