Схема производства силикатного кирпича. Сырье для производства

Когда разговор заводится о заводах, скорее всего воображают: парк транспорта, множество сотрудников, множество производственной техники, гектары с большими производственными терминалами. Большинство отечественных предприятий организованы таким образом, однако эти предприятия по сути являются дотационными. Рентабельность оптимизированного комбината достигается не мощностью, а покупкой быстроокупаемого высокотехнологичного производственного оборудования. Вместо производств прошлого обрзца приходят новейшие оптимизированные фабрики.

Схема производства силикатного кирпича

Строительные машины и оборудование, справочник

Технологическая схема производства силикатного кирпича

К силикатным бетонам относят бесцементные бетоны автоклавного твердения, получаемые на основе извести и песка. Основным цементирующим вяжущим в этих бетонах является известь, а заполнителем служат кварцевые пески.

Плотные силикатные бетоны по прочности достигают уровня показателей прочных цементных бетонов. Из силикатных бетонов (известково-песчаных смесей) изготовляют кирпич, блоки, панели. Последние могут быть неармированными и армированными.

Известково-песчаные смеси обычно приготовляют двумя способами: силосным или барабанным. При силосном способе известь гасится в вертикальных силосах (бункерах), а при барабанном — в гасильных барабанах.

На рис. V-3 представлена технологическая схема производства силикатного кирпича по силосному способу, применяемая на одном из подмосковных заводов.

Известняк из карьера вагонетками с помощью электровозов или .автосамосвалами подается в бункер, а затем качающимся питателем направляется в щековую дробилку 3. После дробления известняк поступает на эксцентриковый грохот для классификации. Отходы из бункера периодически автосамосвалами транспортируются в машины для переработки их в известняковую муку, используемую в сельском хозяйстве.

Обожженная известь пластинчатым конвейером с металлическим настилом непрерывно подается в шаровую мельницу для предварительного грубого помола и далее пневмотранспортом направляется в бункер. Вместо шаровой мельницы для мелкого дробления извести можно установить дробилку (щековую, конусную, молотковую). В этом случае продукт транспортируется системой механического транспорта (элеватором, винтовыми конвейерами и т. п.). Известь из бункера и песок из бункера (около 10% от веса поступающей извести) поступает в шаровую двухкамерную мельницу.

Рис. V-1. Технологическая схема производства силикатного кирпича

Совместный помол извести с песком освобождает от необходимости предварительно сушить песок, так как песок, содержащий карьерную влагу, отдает ее на гашение извести и одновременно сам высушивается. Продукт помола системой пневмотранспорта направляется в гомогенизатор (для получения однородных, гомогенных смесей) либо, минуя его, в бункер. Система пневмотранспорта позволяет загружать бункер непосредственно из гомогенизатора.

Кварцевый песок из карьера в вагонетках электровозом транспортируется в бункер, откуда питателем-дозатором и ленточным конвейером направляется на грохот. После рассева верхний класс поступает в бункер, а нижний (готовый продукт) — в бункер. Песок из бункера ленточным конвейером и молотая известь (с добавкой песка) из бункера 16 винтовым конвейером непрерывно подаются в двухвальный смеситель, где тщательно перемешиваются, увлажняются и обрабатываются горячим паром. Подготовленная известково-песчаная смесь ленточным конвейером распределяется по силосам.

После вылеживания и усреднения известково-песчаная смесь поступает на грохот, где верхний класс удаляется, а нижний направляется в двухвальный смеситель для дополнительного перемешивания, а затем в бункер пресса. Свежеотформованный кирпич при помощи автомата-укладчика укладывается в определенном порядке на запарочные вагонетки. Профиль укладки на вагонетке соответствует сечению автоклава. Запарочные вагонетки с кирпичом-сырцом подаются по рельсовым путям в автоклавы. В последние они поочередно заталкиваются толкателем.

Обычно процесс запарки длится 8—10 ч при давлении 9 атм. Известно, что повышение давления до 13 атм и даже до 17 атм позволяет сократить длительность изотермического процесса и улучшает прочностные и другие качественные характеристики автоклавных изделий. По окончании тепловлажностной обработки крышки автоклава открываются и при очередном проталкивании вагонеток с противоположной стороны выталкиваются вагонетки с кирпичом, прошедшим автоклавную обработку. На складе готовой продукции для разгрузки пакетов используют мостовые краны с грейферными захватами.

К атегория: - Машины в производстве стройматериалов

Источник: http://stroy-technics.ru/article/tekhnologicheskaya-skhema-proizvodstva-silikatnogo-kirpicha

Схема производства силикатного кирпича

На рис. 53 приведена технологическая схема производства силикатного кирпича с приготовлением сырьевой смеси по силосному способу.

Рис. 53. Технологическая схема производства силикатного кирпича с

приготовлением сырьевой смеси по силосному способу; 1 — вагонетка подачи песка, 2 — бункер для песка с ленточным питателем, 3 — ленточные транспортеры, 4— бункер для молотой извести с дозатором, 5 — шнек подачи извести, 6 — шаровая мельница, 7 — бункер для дробленой извести с питателем, 8 — смеситель, 9 — силосы, 10 — элеватор, 11, 12 — мешалки, 13 — пресс, 14 — автомат-укладчик, 15 — вагонетка с сырцом, 16 — поворотный круг, 17 — автоклавы, 18 — парокотельная

Отличительная особенность приготовления сырьевой смеси по этой схеме заключается в том, что увлажненную смесь извести с песком из смесителя 8 ленточным транспортером подают в силосы 9, где выдерживают ее в течение определенного времени. При этом происходит гашение смеси, которое состоит в том, что известь гидратируется и превращается в гидрат окиси кальция.

Силосный способ приготовления смеси имеет значительные экономические преимущества перед барабанным, так как при силосовании смеси не расходуется пар на гашение извести. Кроме того, силосный способ приготовления сырьевой смеси значительно проще барабанного.

Подготовленные известь и песок непрерывно подают в заданном соотношении в одновальные и двухвальные смесители непрерывного действия, в которых их смешивают и увлажняют. Затем смесь поступает в силосы, где выдерживается от 1,5 до 4 ч, в течение которых известь гасится.

Силос (рис. 54) представляет собой цилиндрический сосуд из дерева, листовой стали или железобетона высотой 8— 10 м и диаметром 3,5—4 м. В нижней части силос имеет конусообразную форму.

Силос 3 разгружают с помощью тарельчатого питателя 1, которым смесь подают на ленточный транспортер 4.

Для лучшей разгрузки силоса необходимо, чтобы смесь имела по возможности меньшую влажность. Силосы разгружаются удовлетворительно при влажности массы 3,5—4,5%.

Рис. 54. Силос для гашения сырьевой смеси: 1 — тарельчатый питатель, 2 — шибер, 3 — силос, 4 — ленточный транспортер

При выдерживании в силосах сырьевая смесь часто образует своды. Причина этого — относительно высокая влажность смеси, а также уплотнение и частичное схватывание ее при выдерживании. Наиболее часто своды образуются в нижних слоях смеси у основания силосов.

Для облегчения разгрузки периодически включают вибратор, укрепленный на стенке силоса, и этим уменьшают прилипание смеси к стенкам. Если это не помогает, то смесь выбивают ломами через разгрузочные окна.

В случае зависания сырьевую смесь в силосе рыхлят следующими способами: внутри силоса монтируют автоматические рыхлительные устройства в виде лопастей, которые приводятся в движение вибратором и периодически взрыхляют сырьевую смесь; в конусную часть силоса с двух сторон вводят воздух под давлением, который при периодическом его включении разрыхляет сырьевую смесь и не дает ей зависать..

Автоматические устройства для предупреждения и ликвидации зависаний сырьевой смеси состоят из датчика и исполнительного механизма, разрушающего зависание в силосах. Исполнительным механизмом могут служить вибратор или резиновая диафрагма. Датчик состоит из резинового диска, диафрагмы и микропереключателя типа ИП-1М.

Когда из силоса сырьевая смесь подается нормально, зависания нет, под давлением ее диск диафрагмы прогибается, нажимает на стержень микропереключателя, отчего электрическая цепь размыкается. Как только образуется зависание, то прекращается давление сырьевой смеси на диафрагму, последняя выпрямляется и отходит от стержня микропереключателя, замыкая электрическую цепь. Обрушитель включается в работу; если сводообрушителем является вибратор, то от воздействия вибратора зависание разрушается, давление силикатной смеси на диафрагму восстанавливается, электроцепь размыкается, а вибратор прекращает свое действие.

Для обрушения зависаний смеси сжатым воздухом на бункере или силосе устанавливают три диафрагмы, которые располагают в местах возможного образования зависания.

Каждая диафрагма состоит из стального и резинового дисков. В центре каждого диска имеются отверстия с патрубком. Патрубки соединяются между собой трубой — воздуховодом.

При включении устройства сжатый воздух из магистрали через воздухораспределитель вздувает диафрагму, затем воздух выпускается и диафрагма опадает. При повторении впусков воздуха в диафрагму и выпусков из нее диафрагма встряхивает зависшую смесь, которая обрушивается.

Для того чтобы такое пульсирующее встряхивание диафрагм происходило автоматически, воздухораспределитель включается и выключается датчиком через микропереключатель.

В настоящее время при проектировании заводов силикатного кирпича в схему производства вводят непрерывно действующие силосы.

Технология изготовления силикатного кирпича с помощью непрерывно действующих силосов имеет следующие преимущества перед технологией с периодически действующими силосами:

- производство организуется по непрерывно-поточной схеме;

- уменьшается общая емкость силосов сырьевой смеси; сокращается общая длина транспортеров; упрощается управление силосами. По этой технологической схеме можно выпускать цветной кирпич на любом прессе.

Источник: http://arxipedia.ru/cilikatnyj-kirpich/silosnyj-sposob.html

***

Сырье для производства силикатного кирпича

загрузка.

Основными материалами, применяемыми в производстве силикатного кирпича, являются кварцевый песок и известь.

Кварцевый песок

Образование песка и его состав. Песок образуется в результате выветривания некоторых горных пород: гранитов, гнейсов и др. Эти породы разрушаются под действием тепла, холода, ветра, воды и др. Продукты разрушения горных пород перемещаются ветром и водой на значительные расстояния и затем оседают.

В зависимости от места залегания различают следующие разновидности песков:

- горные и овражные, состоящие из песчинок остроугольной формы с шероховатой поверхностью;

- речные и озерные, имеющие песчинки окатанной формы с гладкой поверхностью.

По размеру зерен пески делятся на:

- крупнозернистые, состоящие из зерен размером до 5 мм;

- среднезернистые, состоящие из зерен размером от 2 до 0,6 мм;

- мелкозернистые, состоящие из зерен размером от 0,6 до 0,2 мм;

- очень мелкозернистые, состоящие из зерен размером от 0,2 до 0,05 мм.

Кремнезем (SiO2) встречается в природе в аморфном и кристаллическом состоянии.

Из аморфного кремнезема образуются залежи диатомита и трепела. Аморфный кремнезем активно вступает в химическую реакцию с известью при обычной температуре.

Кристаллический кремнезем встречается в природе в виде кварца. Кварц обладает большой твердостью и прочностью. В обычных условиях — при нормальном давлении и комнатной температуре — кварц не вступает в химическое взаимодействие с известью, для этого необходимо наличие водной среды и высокой температуры, что практически достигают, применяя насыщенный водяной пар под повышенным давлением.

Пески, содержащие 90% и больше кристаллического кремнезема — кварца, называются кварцевыми.

В большинстве случаев кварцевые пески окрашены в различные цвета имеющимися в них примесями, чаще всего в желтый цвет — соединениями железа. Белые пески встречаются довольно редко.

Tаблица 1 — Химический состав кварцевых песков, %

Источник: http://arxipedia.ru/cilikatnyj-kirpich/materialy-dlya-proizvodstva-silikatnogo-kirpicha.html

Сырье для производства силикатного кирпича

Кирпич и его особенности

На сегодняшний день в строительстве используют два вида кирпича: керамический и силикатный. Сырьем для производства силикатного кирпича служат кварцевый песок, известь и вода. Кирпичные формы загружаются в автоклав и подвергаются действию термической обработки – воздействию под высоким давлением насыщенных водяных паров при температуре около 200 градусов.

К выбору материала необходимо подходить серьезно, именно от материала зависит окончательный вид строения.

Изготовленный из извести и песка по технологии, давно известной человечеству, силикатный кирпич является экологически чистым строительным материалом, имеющим хорошую звукоизоляцию. Силикатный кирпич в сравнении с керамическим имеет большую плотность, а по прочности и морозостойкости оставил далеко позади существующее марки легких бетонов. Достаточно сказать, что на возведенные из него стены строители дают гарантию 50 лет и более.

При этом постройки из силикатного кирпича неприхотливы и устойчивы к капризам природы. Выложенные из него стены сохраняют свой цвет продолжительное время за исключением случаев, когда они подвергаются долговременному воздействию повышенной влажности.

Необходимо заметить, что при всех своих достоинствах силикатный кирпич имеет низкую водо- и жаростойкость, поэтому его нельзя использовать в строительстве фундаментов, канализационных колодцев, а также печей и дымовых труб.

Один из самых прочных и морозостойких строительных материалов на сегодняшний день.

Обожженный (керамический) кирпич в строительстве жилья использовался человечеством уже в ІІІ-ІІ тысячелетии до н.э. На Руси обожженный кирпич используют с конца ХV века. За это время он прошел длинный путь от экзотического незнакомца до проверенного и надежного помощника. Понятно, что в начале своего пути он значительно отличался от хорошо знакомого нам сегодня кирпича. Технология его изготовления обновлялась в соответствии с требованиями времени, и недаром сегодня во всем мире строители ценят кирпич за большую прочность и долговечность.

Сырьем для производства керамических кирпичей служит обыкновенная глина. В зависимости от ее состава – природного или искусственно насыщенного – изготавливают различные виды керамического кирпича. Глину обжигают в сушильной камере. Технологии обжига (колебание влажности сырья, колебание температуры, продолжительность обжига) разрабатываются для каждой глины индивидуально. Именно от температуры обжига и его продолжительности напрямую зависят прочность и морозостойкость готового кирпича.

Существенным недостатком кирпича является его небольшой размер, что увеличивает время строительства.

Керамический кирпич подразделяется на рядовой (технология его производства описана выше) и лицевой, который изготавливается по специальной технологии, благодаря которой приобретает дополнительную прочность и поразительную устойчивость к неблагоприятному воздействию окружающей среды.

Оба вида керамического кирпича обладают значительной морозостойкостью, высокой прочностью и устойчивостью. Изготовленный из глины керамический кирпич является экологически чистым строительным материалом, он мало впитывает в себя влагу, а в тех случаях, когда это происходит, быстро высыхает и при этом не поддается деформации. А еще он имеет высокую плотность, что позволяет ему выдерживать значительные нагрузки, и является достаточно хорошим звукоизолятором.

Специфика газобетона

Газоблок (или газобетон) в последние годы стал одним из самых популярных строительных материалах. Он обладает рядом достоинств, но прежде чем говорить о его плюсах, давайте разберемся в том, что же собой представляет газоблок.

Небольшой вес газобетона позволит сэкономить на конструкции фундамента.

Газобетон – это разновидность ячеистого бетона, искусственный материал с равномерно размещенными по телу воздушными порами. Обычный газоблок состоит из кварцевого песка, алюминиевой пудры, извести, цемента и воды. Некоторые производители добавляют в этот состав отходы производства: золу, шлаки и т.п. что значительно уменьшает себестоимость производства, но в конечном итоге отрицательно сказывается на качестве.

Технология производства газобетона проста: состав замешивают водой и заливают в форму. При этом газообразователь (алюминиевая пудра) с помощью воды вступает в реакцию с известью. Следствием этой реакции является выделение водорода, который и образует поры. Благодаря этому смесь поднимается наподобие дрожжевого теста, после чего затвердевает. Получившееся масса режется на блоки, которые потом “доходят” под давлением в автоклаве.

Как строительный материал газоблок достаточно молод – первый удачный опыт производства газобетона был осуществлен 85 лет назад. Благодаря своей пористой структуре газоблок имеет высокие теплоизоляционные качества. Эти его свойства в несколько раз выше, чем у кирпича и тяжелого бетона. По своим физическим свойствам газоблок схож с деревом: экологически чистый, дышащий и теплый материал. Его, как и дерево, довольно легко пилить, сверлить и т.п. В то же время газобетон (в отличие от дерева) устойчив к гниению и пожароустойчив.

Мелко пористая структура газобетона создает хорошую звукоизоляцию стен.

Газоблок – достаточно прочный строительный материал, позволяющий вести строительство зданий и сооружений. Из газоблоков можно построить здание с разной толщиной стен и с разной теплопроводностью. Но при этом нужно иметь в виду, что здания выше трех этажей строить целиком из газоблоков не рекомендуется.

Средний газоблок весит около 22 кг, при этом его размер в несколько раз больше, чем размеры кирпича. Для сравнения: аналогичный газоблоку объем кирпича весить будет около 64 кг. При этом ячеистый газобетон в 10 раз лучше кирпича поглощает звук, в связи с чем отпадает необходимость в дополнительной звукоизоляции. Газобетон (как и кирпич) – материал не горючий, не выделяющий токсичных элементов при пожаре.

Сравнительные технические характеристики кирпича и газобетона

Предел прочности на сжатие для керамического кирпича составляет 110-120 кг/см2;, для газоблоков – 25-50 кг/см2;.

Масса 1 м3; стены кирпичной – 1200-2000 кг, газоблочной – 200-900 кг.

Ознакомление с таблицей, представленной на фото, позволит сориентироваться в выборе материала.

Теплопроводность для кирпичной кладки – 0,32-0,46 Вт/мk, для кладки из газоблоков – 0,09-0,12 Вт/мk.

Морозостойкость: кирпич – 75-100 циклов, газоблок – 50 циклов.

Водопоглощение для кирпичной кладки – 8-12 % по массе, для газобетона – 20 % по массе.

Огнестойкость: кирпичная кладка – 1 (низший) класс, кладка из газоблоков – 1 класс.

Размер изделия: кирпич – 65х120х250 мм, газоблок – 200х300х600 мм.

Вес: для кирпича – 1800 кг/м3;, для газобетона – 400 кг/ м3;.

Количество: кирпич – 380 шт/м3;, газоблок – 28 шт/м3;.

Зная эти характеристики, можно с большей точностью определить, подходит ли выбранный вами материал для строительства вашего дома.

Логично, что между двухэтажным жилым особняком на севере и летним коттеджем на юге есть большая разница.

Чтобы окончательно прояснить этот вопрос, рассмотрим каждый показатель и то, как он будет влиять на прочность, устойчивость и долговечность построенного дома.

Коэффициент предела прочности на сжатие

Широкий выбор форм и размеров газобетона позволит легко подобрать вариант, необходимый для строительства любой части здания.

От предела прочности на сжатие напрямую зависит прочность коробки дома. Чем больше этажей в строящемся доме и чем тяжелее междуэтажные перекрытия, тем показатель предела прочности на сжатие должен быть выше.

Допустим, вы хотите построить двухэтажный коттедж с подвальным помещением. Высота каждого этажа – 2,5 м. Междуэтажные перекрытия сделаны из железобетонных плит. В этом случае наружные (несущие) стены нужно выполнять только из кирпича, потому что он с легкостью выдержит вес несущих стен и положенных на них междуэтажных перекрытий. А вот стены из газобетона эту же нагрузку вряд ли выдержат, по стенам могут пойти трещины. Но самонесущие (такие, которые передают фундаменту только собственный вес) и не несущие (например, межкомнатные перегородки) стены в данном примере можно построить как из кирпича, так и из газоблока.

Необходимо подчеркнуть, что определить вес, который будет нести несущая стена, “на глазок” можно только очень приблизительно. Чтобы у вас была абсолютная уверенность в правильности выбора материала, при проектировании дома дайте задание вашему проектировщику произвести необходимые расчеты.

Коэффициент массы стены

Особенность пеноблока – легкий распил, что позволит подогнать его размер под любые нужды.

Такой показатель, как масса стены, определяет вес, который передают фундаменту стены и межэтажные перекрытия. От правильного определения этого показателя напрямую зависит тип фундамента строящегося дома. Из приведенных выше сравнительных характеристик видно, что масса кирпича превосходит массу газобетона почти в 20 раз. Отсюда логический вывод: фундамент под кирпичные стены нужно делать более прочным, следовательно, и более дорогим, чем под стены из газоблоков.

Коэффициент теплопроводности

В отличии от кирпича, газобетон впитывает влагу, поэтому его следует оштукатурить.

Коэффициент теплопроводности определяет способность материала пропускать через себя тепло. Чем он выше, тем теплоизоляционные свойства материала хуже. Из приведенных сравнительных характеристик видно, что коэффициент теплопроводности у кирпича выше, чем у газоблока, почти вчетверо. Именно по этой причине санитарные нормы рекомендуют возводить стены из кирпича толщиной в 1 м, а из газобетона – 0,5 м. На практике же в современном строительстве кладка кирпичной стены редко бывает больше 25 см, а чтобы понизить коэффициент теплопроводности кирпича, используют больше внутренних и наружных теплоизоляционных материалов, чем при возведении стен из газоблоков.

Коэффициент водопоглощения

Коэффициент поглощения определяется способностью материала вбирать в себя воду и удерживать ее внутри. Водопоглощение ухудшает свойства материала, уменьшает его прочность. Из сравнительных характеристик видно, что газоблок впитывает в 1,5 раза больше влаги, чем кирпич. На практике это значит, что наружным стенам из газоблока необходима дополнительная защита, и приходится в обязательном порядке облицовывать фасад дома.

Коэффициент морозостойкости

Морозостойкость материала показывает способность влажного материала сохранять прочность при чередовании циклов замораживания и оттаивания. Из сравнительных характеристик видно, что коэффициент морозостойкости у кирпича выше, чем у газобетона, поэтому построенным из газобетона зданиям необходимо дополнительное утепление и изоляция от перепадов температуры.

Коэффициент огнестойкости

Как кирпич, так и газобетон имеют высокий класс огнестойкости и способны выдерживать открытый огонь не менее 2.5 часов.

Коэффициент огнестойкости – это способность материала к сопротивлению воздействия высокой температуры. Проще говоря, этот показатель показывает, через какое время конструкция из данного материала обрушится при пожаре. В соответствии с действующими противопожарными нормами и кирпич, и газоблок относятся к первому классу огнестойкости и имеют запас времени для борьбы с огнем не менее 2,5 часов.

Напоследок еще один важный момент. В нашем сознании сформировано стойкое убеждение, что хороший дом можно построить только из кирпича. И подтверждением тому служат простоявшие несколько веков и прекрасно сохранившиеся до наших дней здания. Конечно, традиции, в том числе и в строительстве, – это замечательно, но при этом не надо забывать, что время не стоит на месте, и что когда-то кирпич тоже был новичком в строительстве. Современные технологии позволяют строить дома быстрее, легче, дешевле. Главное, чтобы использование новых строительных материалов было не данью моде, а продуманным и взвешенным решением.

Кирпич или газобетон: что лучше?

Фактически один кирпич в 13 раз меньше, чем один газоблок, а весит в 3-4 разы больше. 1 м³ кладки из газобетона весит 400 кг, а такой же обьем кирпичной кладки – 1800 кг. На практике это значит, что на выгонку коробки дома из газоблоков уйдет в два раза меньше времени, чем на выгонку коробки из кирпича.

Из чего лучше построить свой дом? Это исключительно ваш выбор, и никто его за вас не сделает. Но его можно облегчить, внимательно рассмотрев все достоинства и недостатки того и другого материала. Вот краткий итог нашего исследования:

  1. Хороший газоблок дешевле хорошего кирпича. К тому же найти сегодня хороший кирпич – задача архисложная.
  2. Керамическому кирпичу как строительному материалу около 500 лет; газоблок в строительстве используется не более 80 лет. Как сохраняются кирпичные здания, построенные 100-200 лет назад, хорошо известно. Как поведут себя через такое же время здания из газобетона, не знает пока никто.
  3. По техническим характеристикам газоблок теплее кирпича. 40 см кладка из газоблока, обложенного кирпичом, не нуждается в дополнительном утеплении, 60 см кирпичная кладка такого утепления требует.
  4. Хотя по теплопроводимости газоблок значительно лучше кирпича, но кирпич значительно лучше по теплоемкости. Проще говоря, в утепленном кирпичном доме тепло дольше будет держаться в стенах, медленнее выходя наружу.
  5. Несущая способность кирпича выше, чем у газоблока. Но времени на кирпичную кладку требуется значительно больше. Да и штукатурки на кирпичную стену пойдет гораздо больше, чем на такую же стену из газоблока.

Какой же из всего сказанного напрашивается вывод? Дать однозначный ответ, что же лучше – кирпич или газобетон – практически невозможно. В одном случае можно использовать только кирпич, в другом – только газоблок, в третьем – как кирпич, так и газоблок. Но из какого бы материала ни был выстроен ваш дом, важно, чтобы он дарил свои тепло и уют вам и вашим близким.

Источник: http://1pokirpichy.ru/vidy/gazoblok-ili-kirpich.html

Смотрите по теме

19 сентебря 2018 года

Часто читают...